bonsoir Alors je voudrais que vous m'aidiez a résoudre cet exercice de géométrie Un cone de révolution dont la base est un carré de 8 cm de coté est coupé par u
Mathématiques
magnoujeremie
Question
bonsoir
Alors je voudrais que vous m'aidiez a résoudre cet exercice de géométrie
Un cone de révolution dont la base est un carré de 8 cm de coté est coupé par un plan parallele a sa base aux deus tiers de sa hauteur en partant du sommet.Calculer l'aire en cm2 de l'aire de la section.
Merci d'avance
Alors je voudrais que vous m'aidiez a résoudre cet exercice de géométrie
Un cone de révolution dont la base est un carré de 8 cm de coté est coupé par un plan parallele a sa base aux deus tiers de sa hauteur en partant du sommet.Calculer l'aire en cm2 de l'aire de la section.
Merci d'avance
1 Réponse
-
1. Réponse matmgn
Bonjour. La base étant carrée, ce n'est pas un cône de révolution. On appelle ça une pyramide. Puisque cette pyramide est coupée par un plan parallèle à sa base, la "pointe" est une réduction de la pyramide de départ. La hauteur est divisée par trois, donc le coefficient de réduction vaut 1/3. Donc toutes les distances sont multipliées par 1/3. Par conséquent, les aires sont multipliées par (1/3)^2=1/9. L'aire de la section vaut donc 8×1/9=8/9 en cm2.